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Abstract
A novel Speech Emotion Recognition (SER) method based on phonological features is proposed in this paper. Intuitively, 
as expert knowledge derived from linguistics, phonological features are correlated with emotions. However, it has been 
found that they are seldomly used as features to improve SER. Motivated by this, we set our goal to utilize phonological 
features to further advance SER’s accuracy since they can provide complementary information for the task. Furthermore, 
we will also explore the relationship between phonological features and emotions. Firstly, instead of only based on acoustic 
features, we devise a new SER approach by fusing phonological representations and acoustic features together. A significant 
improvement in SER performance has been demonstrated on a publicly available SER database named Interactive Emotional 
Dyadic Motion Capture (IEMOCAP). Secondly, the experimental results show that the top-performing method for the task 
of categorical emotion recognition is a deep learning-based classifier which generates an unweighted average recall (UAR) 
accuracy of 60.02%. Finally, we investigate the most discriminative features and find some patterns of emotional rhyme 
based on the phonological representations.

Keywords Speech emotion recognition · Phonological features · Feature analysis · Acoustic features

1 Introduction

Automatic Speech Emotion Recognition (SER) has been an 
active research area during the past several decades, and is 
of great interest for the human computer interaction commu-
nity. An accurate and efficient human emotion recognition 
system will help make the interaction between humans and 
computers more natural and friendlier. Automatic SER has 

wide applications ranging from computer tutoring to mental 
health diagnosis (Jin et al. 2015).

The accuracy of speech emotion recognition mainly relies 
on two factors—features and classifiers. In terms of features 
used in SER, different acoustic features have dominated the 
literature, primarily the large set of acoustic features charac-
terizing prosodic, voice quality and spectral related features. 
These acoustic features consist of frame-level features that 
are often referred as low-level descriptors (LLDs), and their 
corresponding functions are used to map LLDs at the seg-
ment level to a space at the utterance level. Most research 
uses a “brute-force” feature selection method (Jin et al. 2015; 
Shen and Wang 2018) for different classification tasks. How-
ever, these feature sets are often different in diverse tasks, 
and there are no other features as salient as Mel-frequency 
cepstral coefficient (MFCC) in SER (Han (2014)).

Currently, there are many limitations in automatic SER. 
Firstly, since most related research works only use acous-
tic features in SER, it is very difficult for them to find out 
whether there are existing some specific speech phonologi-
cal patterns for different emotions. Secondly, although some 
research works have used deep learning methods to classify 
speech emotions with raw acoustic data, it is still quite chal-
lenging to interpret the relationship between emotions and 
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phonology based on the abstract features extracted from raw 
acoustic data.

Motivated by the challenges mentioned above, we pro-
pose a novel method which combines acoustic features and 
phonological representations in speech emotion recognition. 
Our aim is two-fold. Firstly, we investigate whether adding 
the phonological features that represent the linguistic expert 
knowledge can achieve information gain to improve SER’s 
performance based on a deep learning method. Secondly, 
we explore the relationship between different emotions and 
phonological representations. We are able to obtain a set 
of specific phonological patterns from a series of discrete 
phonological representations that are actually derived from 
the original acoustic features.

Evaluative and comparative experiments have been con-
ducted on the IEMOCAP dataset (Busso et al. 2008) which 
convey four basic emotions in three-dimensional emotion 
space. The experiments include two parts. The first part is to 
improve SER by combining acoustic features and phonologi-
cal representations together. The second part is to analyze 
the discriminative power of acoustic features and phonologi-
cal representations and to find out related feature patterns.

This project is based on but significantly extended beyond 
a previous work (Shen and Wang 2018) on SER. In (Shen 
and Wang (2018)), they have demonstrated that the ToBI 
phonological representation can improve the speech emotion 
recognition performance, while we make a further study on 
an optimal classification method to balance phonological 
and continuous features in this project. Furthermore, this 
research also explores how the phonological representation 
can be utilized to improve the performance and their differ-
ent impact in emotion dimensions.

The paper is organized as follows. Section 2 reviews the 
related work and literature on the IEMOCAP database. Sec-
tion 3 presents the methodology. Experimental results are 
presented in Sect. 4. Finally, we conclude in Sect. 5.

2  Related work

2.1  Emotion models

There are two popular emotion models that dominate the 
research (Han 2014). The first is the discrete emotion model. 
It claims that only a few discrete emotions exist. Catego-
rial labels are the most popular ones to differentiate dis-
tinct emotions. However, the size of an emotion lexicon is 
huge. To facilitate emotion recognition research, a set of 
six basic emotions (happiness, sadness, anger, fear, surprise 
and disgust) proposed by Ekman (Ekman (1992)), are found 
to be more universal. Other emotions can be regarded as a 
combination or variation of these six. The second one is the 
dimensional emotion model which is an alternative to the 

discrete emotion model (Han 2014). It states that emotions 
can be distinguished based on a set of certain characteristics 
(dimensions). Based on this model, emotions can be labeled 
by specifying a value for each dimension. It is well-known 
that emotion can be characterized using two dimensions: 
activation and valence (Fernandez 2004). Activation refers 
to the amount of energy required to express a certain emo-
tion while valence refers to the subjective feeling of pleas-
antness or unpleasantness.

2.2  Phonological representations

There are few reports about how to improve SER by utilizing 
the features from the Tones and Break Indices (ToBI) frame-
work in publicly available studies. Existing related research 
mainly focuses on the impact of some discrete features 
extracted based on ToBI for SER. For instance, Iliev et al. 
(2007) used the ToBI features to recognize angry, happy 
and sad emotions. The authors also combined acoustic fea-
tures together with ToBI features to improve SER. However, 
they only used ToBI features related to tonal information, 
while ignoring the break indices which also carry informa-
tion about emotions. They did not consider the sequential 
information of ToBI features encoded in an utterance, as 
well. Cao (2014) explored the phonological cues from the 
ToBI system to study the relation between phonological cues 
and specific emotions. The study indicates that the discrete 
features from the ToBI system are comparable to the acous-
tic features but not robust for sentence-independent emotion 
classification tasks. However, the dataset utilized is not pub-
licly available, and only a few discrete phonological features 
related to breaks, boundary tones and types of pitch accent 
were extracted manually and involved in research. This 
study provides some tantalizing hints about the relationship 
between phonological and specific emotions. Our research 
is inspired by this work, while focusing on improving the 
speech emotion recognition further based on the IEMOCAP 
database. Our main research tasks include: (1) To prove the 
phonological features can provide supplementary emotion 
information for acoustic features in public database. (2) To 
propose a hybrid feature model to improve the UAR per-
formance of SER. Compared to Cao (2014), we plan to use 
AutoToBI to extract more phonological features in the ToBI 
framework. (3) To analyze the Top 3 acoustic features and 
Top 3 phonological features in four basic emotions model 
and three dimensions emotions model, respectively. We also 
want to analyze the different effect of these features in dif-
ferent emotion dimensions.

2.3  Related work on the IEMOCAP database

We summarize the results of recent related studies on the 
IEMOCAP database in Table 1. We observe that the best 
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unweighted average recall (UAR) on the IEMOCAP data-
base is 58.46% using hierarchical binary Bayesian logistic 
regression (Lee et al. 2011). Support vector machines are 
the most popular algorithm to classify emotions due to 
good performance on small datasets and its ability to deal 
with high dimensions. However, it performs worse than 
other classifiers in this situation, including logistic regres-
sion and deep learning. Currently, the focus on algorithmic 
research in emotion recognition has changed from tradi-
tional machine learning methods to deep learning methods 
(Fayek et al. 2017; Badshah et al. 2017; Huang et al. 2017). 
Some studies extract emotionally salient parts of speech 
based on an attention mechanism (Mirsamadi et al. 2017), 
which has been successfully applied in image and speech 
recognition fields. However, to the best of our knowledge, 
all previous research based on the IEMOCAP database has 
only used acoustic features in emotion recognition.

3  Methodology

As demonstrated in Fig. 1, we propose to incorporate 
phonological features to further improve the performance 
of SER. Our aim is to determine whether phonological 
representations can improve SER performance which 
will validate the significance of using phonological 
representations.

3.1  Acoustic features

We extract acoustic features of speech in terms of prosodic 
features, voice quality and spectral related features as well as 
their global statistics with openSMILE toolkit (Eyben 2010). 
The baseline feature set of the Interspeech 2010 paralinguistic 
challenge (Müller 2010) is used for our experiments. As shown 
in Table 2 (Beckman et al. 2005), the feature set used in our 
experiment consists of 38 basic Low-Level Descriptors (LLDs). 
21 functions are applied to 34 of the above LLDs and their cor-
responding delta coefficients, while 19 functions are applied to 
the remaining four F0-related LLDs and their corresponding 
delta coefficients. In addition, the durations and F0 onsets are 

Table 1  Comparison of several 
selected discrete emotion 
recognition related work based 
on the IEMOCAP database, in 
terms of classifiers, features and 
UAR 

Classifiers Features UAR (%)

Hierarchical binary Bayesian logistic regression (Lee et al. 2011) Acoustic 58.46
Support vector machine (SVM) (Mariooryad and Busso 2013) Acoustic 50.64
Replicated softmax model (RSM) + SVM (Shah et al. 2014) Acoustic 57.39
CNN (Fayek et al. 2017) Acoustic 58.28
Attention based bidirectional long short term memory recurrent neural 

network (Badshah et al. 2017)
Acoustic 58.8

Attentive CNN (Huang et al. 2017) Acoustic 56.1

Fig. 1  Our proposed method 
to improve speech emotion 
recognition

Table 2  List of the acoustic features

LLDs Number

(Δ)Loudness 1
(Δ)MFCC(Mel frequency cepstral coefficients)[0–14] 15
(Δ)Log Mel frequency band[0–7] 8
(Δ)LSP[0–7] 8
(Δ)F0 1
(Δ)F0 envelope 1
(Δ)Voicing probability 1
(Δ)Jitter local 1
(Δ)Jitter consecutive frame pairs 1
(Δ)Shimmer local 1
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also considered and included in the feature set. Thus, the dimen-
sion of the emotional feature vector is: 21*34 (LLDs) + 21*34 
(delta coefficients of LLDs) + 19*4 (LLDs) + 19*4 (delta coef-
ficients of LLDs) + 1 (durations) + 1 (F0 onsets) = 1582. The 
final acoustic feature vector has a dimension of 1582,

where  a1,  a2,  a3, …,  a1582 are the values of the 1582 acoustic 
features.

3.2  Phonological features

ToBI is a system for transcribing phonological patterns and 
other aspects of the prosody of English utterances (Beckman 
et al. 2005), though it has been adapted for other languages as 
well. We use ToBI to generate phonological representations. 
Tone tier and break tier elements are used to depict the cho-
sen distinct emotional states. Phonological features are defined 
as sequences of abstract prosodic events aligned to syllables 
under the ToBI framework. The phonological features consist 
of the times of every prosodic event and is a sparse one-hot 
vector with fixed length. AuToBI system is a freely distributed 
tool for non-commercial use. It is used to analyze automati-
cally Standard American English prosody. After feeding a seg-
mentation of a speech sample, AuToBI can extract the requi-
site features from the speech signal and generate predictions 
for each element of the ToBI standard using the stored models. 
In our experiments, 141 phonological representations based 
on ToBI labels are extracted, and the detailed list of those 141 
features are shown in Table 3. We use AuToBI (Rosenberg 
2010) to automatically extract these prosodic events to avoid 
time-consuming manual labeling. Instead of only counting 
these discrete prosodic events, we also incorporate the bigram 
of neighboring prosodic events which takes the sequence of 
phonological representations into account. Finally, we obtain 
141 phonological representations in total, as listed in Table 3 
(Schröder 1992). The phonological feature is represented as,

where  p1, …,  p141 are the prosodic events. Finally, we com-
bined both the acoustic and phonological features together 
to form a hybrid feature vector,

4  Experiments and discussions

4.1  Data description

The database used in this work is the interactive emotional 
dyadic motion capture database (IEMOCAP) database. It 

(1)fa = (a1, a2, a3,… , a1582)

(2)fp = (p1, p2, p3, ..., p141)

(3)ff = (f1, f2, f3, ..., f1723)

is collected by the Speech Analysis and Interpretation Lab-
oratory (SAIL) at the University of Southern California 
(USC). This database records around 12 h of the audio-vis-
ual data of five pairs of mixed-gender actors during a set of 
spoken communication scenarios with scripts (Busso et al. 
2008). In this study, we only focus on the audio channel to 
perform speech emotion recognition.

We use two tags of the database: the categorical and 
dimensional tags. Specifically, the categorical tags that are 
under consideration for the IEMOCAP corpus are: neutral, 
angry, happy and sad (for simplicity, we combine happy 
and excitement into one: happy). In total, the data used in 
our experiments comprise 5531 utterances with an average 
duration of 4.5 s. We split the dimensional tags (valence, 
activation and dominance) into three levels: Level 1 con-
tains ratings in the range [1,2), Level 2 for the range [2,4), 
and Level 3 for the range (Ekman 1992; Fernandez 2004). 
Correspondingly, these levels intuitively correspond to 
low, medium and high activation; or negative, neutral and 
positive valence; or weak, medium and strong dominance. 
In Table 4, we show their distributions on the database. 
As can be seen, it is an imbalanced dataset, either in terms 
of the number of samples in each class (1084–1708) or 
dimensional tags (647–3764).

Table 3  List of the 141 phonological representations based on ToBI 
labels

Phonological representations Examples Numbers

Breaks indices Breaks indices 1
Breaks indices 3
Breaks indices 4

3

Phrasal tones L-
H-
!H-

5

Pitch accent H*
!H*
L + H*
H*,H*

6

Bigrams – pitch accent H*,!H*
!H*,!H*
H*,L-

27

Bigrams – pitch accent with phrasal 
tones

L* + H, intona-
tional bound-
ary

!H*, intonational 
boundary

L-,H*

30

Bigrams – phrasal tones with pitch 
accents

L-,!H*
H-,!H*

48

Bigrams – phrasal tones L-,L-
L-,H-
H-,H-

22
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4.2  Data preprocessing

The normalization method has a nontrivial effect on the 
experiment results. The goal of normalization is to eliminate 
speaker and recording variabilities while keeping their emo-
tional discriminations. For our experiments, Z-score nor-
malization is applied to all the data to produce a distribution 
with a mean value of 0 and standard deviation of 1, making 
our speech emotion recognition speaker-independent.

Z-score normalization is a general normalization method 
to avoid the influence of range of different features values. 
In SER, there are a lot of various features with different 
dimensions, it is necessary to make a Z-score normalization. 
To calculate the z value for a feature observation value xi of 
feature x , we use the following equation:

where x and s are the mean and standard deviation values of 
feature x , respectively.

4.3  Experiment 1: Improving speech emotion 
recognition by adding phonological 
representations

4.3.1  Experiment setup

The classifiers used in our experiments include support 
vector machine (SVM) with complexity 1, logistic regres-
sion (LR) and convolutional neural networks (CNNs), 
representing the most successful classifiers that have 
been used in SER. SVM and LR are the classical methods 
of machine learning which achieve great performance. 
CNN is the method which layered architecture matches 
what we find in the cortex. The architecture and configu-
rations of our CNN model are as follows. We use one-
dimensional convolution because the feature vector that 
we have extracted with OpenSmile is one-dimensional. 
Firstly, we have two convolutional layers each followed 
by BatchNorm, ReLU, dropout and a maximum pooling 
layer. Then, one dense layer is added followed by Batch-
Norm and dropout. Finally, to provide a probabilistic 

Z =
xi − x

s
,

interpretation of the model’s output, the output layer 
utilizes a softmax nonlinearity instead of the nonlinear 
function used in the previous layers. The base learning 
rate is set to 10–4 and the optimizer is Adam. The epoch 
is 10 and the training batch size is 32. The L2 regulariza-
tion (λ = 0.01) is applied on the convolutional and dense 
layers. All filter sizes in the experiments are set to 10 and 
the max-pooling size is 2. We have four CNNs with dif-
ferent topologies to explore CNN’s performance in depth 
by changing the number of hidden neuros in the dense 
layers and the number of filters in the convolution layers 
according to experience and experiments.

A ten-fold leave-one-speaker-out cross-validation 
scheme (Schuller et al. 2009a) is employed in our experi-
ments using nine speakers as the training data and one 
speaker as the testing data. As per standard practice in the 
field of automatic SER, experimental results are evalu-
ated using the unweighted average recall (UAR) metric to 
reflect imbalanced classes (Schuller et al. 2009b),

where ci is the number of examples in class i (i = 1, 2, 3, 4) 
that are correctly predicted by the classifier, while ni is the 
total number of examples in class i (n1 = 1708, n2 = 1103, 
n3 = 1636, n1 = 1084) and N is the total number of classes in 
the dataset (N = 4). The main reason to use UAR is to avoid 
that the accuracies of large classes will dominate the final 
evaluation result. UAR will first calculate each class’ recall 
value which does not rely on the size of the class. Then, by 
averaging all the recall values across all the classes it gener-
ates the final UAR values. On the other hand, weighted aver-
age recall (WAR) will consider all the classes as a whole, 
and calculate the recall based on the ratio between total num-
ber of correctly predicted examples (hits) and total number 
of examples in the dataset,

This will make large classes’ recall values dominate the final 
result.

(4)UAR =
1

N

N
∑

i=1

ci

ni

(5)WAR =

∑N

i=1
ci

∑N

i=1
ni

Table 4  Distribution of emotion 
categories in valence, activation 
and dominance

Valence Activation Dominance Total

Negative Neutral Positive Low Medium High Weak Medium Strong

Neutral 99 1465 144 304 1358 46 244 1343 121 1708
Angry 856 237 10 14 608 481 7 407 689 1103
Happy 19 439 1178 50 1109 477 138 1033 465 1636
Sad 591 468 25 358 689 37 258 686 140 1084
Total 1565 2609 1357 726 3764 1041 647 3469 1415 5531
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4.3.2  Baseline SER methods

The baseline SER methods in our experiments are SVM, 
logistic regression and convolutional neural network with 
the acoustic features only. Under these baseline methods, the 
objective is to validate the predictive power of the phonologi-
cal features in speech emotion recognition and find out the 
improvement in UAR after adding those phonological features.

4.3.3  Results and analysis

The experiment results are shown in Table 5. CNN classifier 
training took the longest time. It takes 186 s to train the CNN 
model based on 1582 acoustic features, 187 s based on 1723 
fused features, and 153 s based on 141 prosodic features.

Figure 2 compares the UAR performance of acoustic 
only, prosodic only, and fused features. As can be seen 

from the results, we can find that the UAR performance for 
prosodic features only based method (Cao 2014) is very 
low. However, after fusing them with the acoustic ones, 
we can achieve the best UAR performance, which demon-
strates the complementary component contributions from 
the prosodic features towards SER. For the four basic emo-
tions recognition task, our proposed method achieves a 
UAR accuracy of 60.22% by using both acoustic and pho-
nological features based on a deep learning method (i.e., 
convolutional neural network), which is a 3.1% improve-
ment beyond our approach with acoustic features only. 
Compared with the research on the same database, our 
performance is significantly better than the state-of-the-
art (58.46%) achieved by Lee et al. (Lee et al. 2011), who 
utilized a hierarchical binary decision tree with speaker-
dependent normalization (Fayek et al. 2017). Similarly, 
for dimensional emotion recognition tasks, the best results 

Table 5  The results of 
Experiment 1

The best runs are indicated in bold font
We show results on three classifiers: SVM, LR and CNN with four different topologies. FC(n0) denotes a 
fully connected layer of  n0 units. Conv1D(m × j) denotes a one-dimensional convolutional layer of m filters 
of size j with a stride of 2. Softmax(n0) denotes a softmax output layer of  n0 units
#a*b/c/d means the CNN parameters setup as Conv1D (a*b)-FC (c)-Softmax (d)

Tasks Classifiers Features

Acoustic Phonological Acoustic and 
Phonological

UAR (%) UAR (%) UAR (%)

Four basic emotions SVM 49.91 32.31 51.35
LR 55.18 30.05 57.33
#32*64/ 100/4 59.04 30.72 59.59
#32*64/200/4 57.12 32.14 60.22
#16*32/100/4 59.05 28.83 59.59
#16*32/200/4 59.05 29.27 59.59

Activation SVM 53.21 38.81 54.48
LR 54.69 40.07 58.77
#32*64/100/3 59.76 44.26 59.65
#32*64/200/3 59.43 46.07 59.49
#16*32/100/3 58.32 39.78 60.59
#16*32/200/3 58.58 40.35 60.78

Dominance SVM 44.82 37.43 46.06
LR 45.99 38.86 49.50
#32*64/100/3 48.72 41.43 49.89
#32* 64/200/3 48.37 42.12 49.37
#16*32/100/3 47.82 39.94 47.91
#16*32/200/3 48.03 40.09 49.88

Valence SVM 44.54 37.25 44.59
LR 49.68 37.34 53.58
#32*64/100/3 56.07 37.41 56.53
#32*64/200/3 55.44 37.54 56.62
#16*32/100/3 55.97 36.10 56.22
#16*32/200/3 55.64 35.46 55.79
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for activation, dominance and valence classification are 
60.78%, 49.89% and 56.62% in UAR respectively, which 
are also achieved by our CNN classifier and indicate a 
UAR improvement of 4.08%, 3.51% and 3.9% respectively, 
if compared with the logistic regression classifier.

Typically, the deep learning-based approach (CNN) 
achieves the best performance across all the four recogni-
tion tasks. The improvements in SER by adding phono-
logical features have demonstrated that this type of exper-
tise knowledge’s information gain is helpful for machines 
to improve their recognition performance if we consider 
the fact that it is related to human perception. This com-
plementary information is concluded from thousands of 
years’ humans’ summarization, which is more abstract, 
general, discriminative, and useful.

Finally, we employ the t-test (confidence level: 0.05) on 
independent samples to statistically evaluate the signifi-
cance of the SER performance improvement of our fused 
features-based method over the acoustic features only 
based method in terms of UAR. We select the best run 
(marked with a bold font in Table 5) for each classifica-
tion task and use independent examples for the t-test. The 
p-values for the four classification tasks listed in Table 5 
are: 0.042, 0.033, 0.033, and 0.028, accordingly. This 
indicates that the p-values for either the categorical or 
the dimensional tag data are always less than 0.05, which 
suggests that there is a significant improvement in the SER 
performance after integrating the phonological features.

4.4  Experiment 2: feature analysis

4.4.1  Experiment setup

This experiment analyzes the discriminative power of acous-
tic and phonological features related to emotion recognition. 
We design four sub-experiments, namely, category, valence, 

activation and dominance classification. Acoustic and pho-
nological features are respectively used in these four tasks. 
Each time only one feature is used in a classification task. 
All the experiments use the leave-one-speaker-out cross vali-
dation framework which uses nine speakers as the training 
data and one speaker as the testing data. The classifier we 
used in the experiments is logistic regression because it is 
a well-known technique to model binary or dichotomous 
variables while CNN is better to deal with high-dimensional 
features. Then we rank the features according to the results 
of the classification. Three top features are picked up in the 
list as three most discriminative features in the tasks. Then 
we compare these features by Pearson correlation coefficient 
to check if these features are significantly different among 
emotional classes in descriptive and dimension tags clas-
sification tasks. A p-value of smaller than 0. 001 means that 
the correlation is very strong. Otherwise, if the p-value is 
less than 0.01, the correlation is moderately significant. A 
p-value of between 0.01 and 0.05 means that the correlation 
is significant. A p-value of larger than 0.05 indicates that 
there is no statistic correlation.

We use the Pearson correlation coefficient (Pearson 1895) 
to explore the mutual effect of acoustic and phonological 
features on emotion prediction in terms of dimensional 
labels. The Pearson correlation coefficient (PCC) is to meas-
ure the linear relationship between two variables X and Y. 
It has a value between − 1 and + 1, where ‘1’ means total 
positive linear correlation, ‘0′ indicates no linear correlation, 
and ‘− 1’ is total negative linear correlation. The formula for 
the Pearson correlation coefficient rX,Y is defined as follows,

where cov is the covariance of two variables X and Y, �X 
and �Y are the standard deviation of X and Y, respectively.

4.4.2  Results and analysis

Table 6 compares the results of Experiment 2. We can find 
that all single acoustic and phonological feature is not sig-
nificantly correlated with each individual emotion task. In 
dimension classification tasks, the Δloudness (standard devi-
ation), Δloudness (99%-percentile) and Δloudness (1%-per-
centile) are strongly correlated with activation dimension. 
The phonological features such as Pitch accent (! H*), Break 
indices (break indices 1) and Pitch accent (H*) also show 
strong correlation with the valence dimension classification 
task. All of Break indices (break indices 3), Break indices 
(break indices 4) and Pitch accent (!H*) are strongly cor-
relate to the dominance dimension. Pitch accent (L* + H), 
(L* + H, intonational boundary) and Pitch accent (!H*) are 

(6)rX,Y =
cov(X, Y)

�X , �Y

Fig. 2  SER performance comparison for acoustic only, prosodic only 
and fused features in terms of UAR 
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strongly correlated with the valence dimension. All of these 
demonstrate some phonological feature-based emotional 
patterns. Similarly, we can also find that Table 6 also shows 
that the acoustic features are related to the emotional tasks.

We summarize the findings as follows. (1) some acoustic 
features and certain phonological representations charac-
terize the same information of some emotions during their 
classifications. However, these phonological representations 
help us further explain the phonological pattern of differ-
ent speech emotions. The phonological representations are 
the combination of different acoustic features which derive 
from the rule-based linguistic system. Loudness and pitch 
accent are salient features to classify discrete emotions, but 
the phonological representations imply different pitch accent 
types in classifying emotions. In activation classification, 
loudness is the most discriminative acoustic feature, while 
pitch accents H* and !H* are salient phonological represen-
tations. However, pitch accent, which is related to loudness 
and pitch, not only indicates that the stress of some words 
is salient, but also implies the patterns of pitch rhythm for 
different emotions. (2) Phonological representations provide 
complementary information which implies the intonation 
and rhythm. For instance, in terms of dominance, logMel-
FreqBand is the most discriminative acoustic features while 
break indices are the most discriminative phonological 
representations. These features imply that the more disflu-
ent the speech is, the more likely that the dominance has a 
strong level, which makes the speech sound firmer. In terms 
of activation, break index ‘1′ has a positive correlation with 
activation, indicating that the more fluent the speech is, the 
more likely the activation is at a high level. However, we 

cannot draw this type of general conclusions based on the 
acoustic features alone.

In summary, phonological representations indeed explain 
the intuitive relations between phonology and emotions. The 
reason is that although phonological representations are 
derived from acoustic features, they encode related expert 
knowledge which will be helpful for related application, 
such as Bhowmik and Mandal derived Bengali phoneme 
knowledge from acoustic features (Bhowmik and Man-
dal 2018). That is, phonological representations are more 
directly related to emotions than the original acoustic fea-
tures. Although there is an information loss in the phono-
logical representations due to their intermediate level, the 
phonological features provide complementary information 
for us to understand emotions and their patterns.

This method could improve the UAR of SER, but there 
is a little more time cost associated with the added features. 
Fortunately, this time is related to off-line cost, since it has 
happened during the training stage. It has little impact on the 
recognition speed. Meanwhile, the deep learning method can 
effectively eliminate redundant information existing in the 
fed features. If there are no new information gain by contrib-
uting supplemental information by the newly added features, 
the performance of SER will seldomly be improved.

5  Conclusions and future work

In this paper, we have proposed a SER approach which 
incorporates both phonological and acoustic features. 
From the results, we can see that our proposed method has 

Table 6  Top 3 acoustic features (with their functions) and top 3 phonological features according to UAR based on logistic regression, as well as 
their Pearson correlation coefficients

*p-value smaller than 0.05
**p-value smaller than 0.01
***p-value smaller than 0. 001. An absent symbol indicates a p-value larger than 0.05. The value of PCC is the mean value of the feature

Class Acoustic Feature (with functions) PCC Phonological representation PCC

Four basic emotions ΔlogMelFreqBand (quartile1) – Bigram—pitch accent with phrasal
tones (! H*, intonational boundary)

–

Δloudness (standard deviation) – Pitch accent (! H*) –
Loudness (standard deviation) – Pitch accent (H + ! H*) –

activation Δloudness (standard deviation) 0.52*** Pitch accent (! H*) 0.30***
Δloudness (99%-percentile) 0.51*** Break indices (break indices 1) 0.25***
Δloudness (1%-percentile)  − 0.51*** Pitch accent (H*) 0.25***

dominance MFCC (percentile range) 0.49*** Break indices (break indices 3) 0.27***
logMelFreqBand (percentile range) 0.47*** Break indices (break indices 4) 0.273***
logMelFreqBand (quartile3) 0.44*** Pitch accent (! H*) 0.28***

valence logMelFreqBand (percentile range)  − 0.02* Pitch accent (L* + H)  − 0.04***
Δloudness (percentile range)  − 0.07*** Bigram-pitch accent with phrasal tones

(L* + H, intonational boundary)
 − 0.04***

logMelFreqBand (99%-percentile) 0.01** Pitch accent (! H*)  − 0.07***
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achieved the best performance by using a CNN deep learn-
ing model. The proposed method can help us explain the 
relationship between phonology and emotions. The results 
of our feature analysis experiment indicate that the phono-
logical representations, for example, pitch accent and break 
indices, are predictive for emotions. Phonological features 
represent human’s expert knowledge about prosody and 
are correlated with emotions. Therefore, adding this type 
of expert knowledge to speech emotion recognition could 
further improve SER performance and sheds light on finding 
the perceptual relationship between emotions and phonol-
ogy. With the help of phonological features, we can better 
interpret the results, and easily find the patterns for different 
speech emotions which we cannot observe based on the orig-
inal acoustic features only. Our work has also demonstrated 
that discrete phonological representations are beneficial to 
improve emotion recognition performance.

In the future, after further analyzing the features that are 
discriminative for different emotions, we plan to develop 
an end-to-end deep learning-based method for emotion rec-
ognition since we believe that if a large amount of data is 
collected and used, it is promising to significantly improve 
the accuracy and generalize speech emotion recognition with 
by utilizing a deep learning method. In addition, the correla-
tion between different features and emotions in this study is 
based on univariate linear regression. Therefore, we plan to 
have an in-depth analysis of information gain using differ-
ent feature sets and their complementary power in emotion 
recognition. We also tend to explore the applications of our 
method in cross-language, cross-culture, or cross-human 
speech emotion recognition to find out possible phonological 
features that can generally represent certain emotional states 
regardless of the speaker’s cultural background, language, 
and accent, etc.
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